/ By Martin Heller / 0 Comments

10 MLops platforms to manage the machine learning lifecycle

For most professional software developers, using application lifecycle management (ALM) is a given. Data scientists, many of whom do not have a software development background, often have not used lifecycle management for their machine learning models. That’s a problem that’s much easier to fix now than it was a few years ago, thanks to the advent of “MLops” environments and frameworks that support machine learning lifecycle management.

What is machine learning lifecycle management?

The easy answer to this question would be that machine learning lifecycle management is the same as ALM, but that would also be wrong. That’s because the lifecycle of a machine learning model is different from the software development lifecycle (SDLC) in a number of ways.

To read this article in full, please click here

/ By Martin Heller / 0 Comments

10 MLops platforms to manage the machine learning lifecycle

For most professional software developers, using application lifecycle management (ALM) is a given. Data scientists, many of whom do not have a software development background, often have not used lifecycle management for their machine learning models. That’s a problem that’s much easier to fix now than it was a few years ago, thanks to the advent of “MLops” environments and frameworks that support machine learning lifecycle management.

What is machine learning lifecycle management?

The easy answer to this question would be that machine learning lifecycle management is the same as ALM, but that would also be wrong. That’s because the lifecycle of a machine learning model is different from the software development lifecycle (SDLC) in a number of ways.

To read this article in full, please click here